兰州文曦分析仪器有限公司
农   业 土   壤
植   物 生化仪器
水文水质 遥感测绘
环境气象 土木工程
光学仪器 分析仪器
痕量气体 其它领域

兰州文曦分析仪器有限公司
地  址:兰州市城关区科技街95号
联系人:侯应国  手机:13609396037
电  话:0931-8269011 8262889-801 
传  真:0931-8261155
邮  编:730000
www.lzwxyq.cn
E-mail:hyg180@163.com

德国 WALZ产品
美国CID植物根系扫描仪
奥地利Riegl三维激光扫描仪
美国ASD便携式地物光谱仪
美国GSSI探地雷达
比利时AtLas Copco空气压缩机
中国RST系列电化学工作站
瑞士梅特勒天平
麦克奥迪系列显微镜
美国康塔公司
美国布鲁克海文公司
英国马尔文公司
瑞士步琪公司

 

双通道PAM-100测量

产品型号:双通道PAM-100测量系统 Dual-PAM-100-德国WALZ

Dual-PAM-100: 一套空前强大的测量系统
Schreiber教授因发明PAM系列调制叶绿素荧光仪而获得首届国际光合作用协会(ISPR)创新奖
1985年开始商品化的全世界第一台调制荧光仪PAM-100被几代科学家所广泛采用。Dual-PAM-100相当于两台PAM-100的功能。一方面,它继承了PAM-100的所有优点,可以进行复杂的叶绿素荧光分析(PS II活性);另一方面,它还可以通过测量P700的吸收变化来检测PS I的活性。特别需要强调的是,Dual-PAM-100可以在完全同步的情况下测量叶绿素荧光和P700吸收变化。此外,通过特殊的激发-检测单元还可以测量叶绿体或微藻的许多重要光合参数,如跨膜质子梯度delta pH(通过9-AA荧光或吖啶黄荧光)、类囊体膜的电势(通过类胡萝卜素的差示吸收,“P515”)和NADP的氧还状态(通过NADPH荧光)等。如果需要极高的灵敏度可以通过连接光电倍增管检测器实现。
主要功能 * 单独或同步测量微藻、大藻、水生植物等的叶绿素荧光(光系统II活性)和P700(光系统I活性)
 * 两个光系统的诱导动力学曲线(包括快相和慢相)
 * 两个光系统的快速光曲线和光响应曲线
 * 淬灭分析、暗驰豫分析
 * 典型的P700曲线测量
 * 通过叶绿素荧光和P700的同步测量获知两个光系统的电子传递动力学、电子载体库的大小、围绕PSI 的环式电子传递动力学等
应用领域
全球最先进的测量光合作用的技术,已被成功应用于高等植物和蓝藻的P700和叶绿素荧光测量中,用于光合作用机理、胁迫生理学、生理生态学等领域。在其它微藻和大型海藻中的应用还处于起步阶段,恰恰也是比较容易出成果的领域。
测量参数PS II参数: Fo, Fm, F, Fm’, Fv/Fm, Y(II)=△F/Fm’, Fo’, qP, qL, qN, NPQ, Y(NPQ), Y(NO)和ETR(II)等
PS I参数: P700, Pm, Pm’, P700red, Y(I), Y(ND), Y(NA)和ETR(I)等

与PAM-100相比,Dual-PAM-100的主要特点:1)Dual-PAM-100完全由电脑控制,通过专业的Windows操作软件DualPAM进行。
2)软件DualPAM除了基本的系统操作外,还提供许多特定的测量程序。
3)所有必需的光源(激发叶绿素荧光的红光和蓝光、测量P700的近红外光、红色和蓝色的光化光、单脉冲与多脉冲饱和闪光、远红光)均整合在基础系统中,不再需要复杂的电缆连接。
4)采用了专为Dual-PAM-100设计的许多新光-电配件,使得激发-检测单元和整合式光源非常便携、非常便于安装和拆卸。
5)所有的光源都可通过软件在2.5 μs的时间分辨率下控制。
6)测量光的频率范围非常大(1 Hz~400 KHz),因此同一个测量光源既可以用于测量Fo,也可以用于诱发快速动力学(如荧光快速上升相或闪光弛豫动力学)。
7)用户可将针对特殊实验/样品的仪器设置存储起来,此后可在完全相同的设置下重复实验。
8)叶绿素荧光和P700的信号变化完全同步,并且是用同一个检测器检测,且不会互相干扰。
9)测量蓝藻时注意:用红光激发PS II的荧光,用蓝光或远红光激发PS I。 
Dual-PAM-100的这些特点开启了基础光合作用研究和应用光合作用研究的新途径。过去,同步测量PS I和PS II的量子产量需要很强的专业背景和熟练的操作技巧,只有光合作用领域的少数专家会这项技术。现在,即使是初学者,也可迅速掌握同步测量PS I和PS II活性的技术,不再需要复杂的操作技巧。专为Dual-PAM-100设计的Windows操作软件DualPAM功能强大,允许独立记录叶绿素荧光或P700,或同步记录叶绿素荧光和P700,记录每次打开饱和脉冲时的动力学变化,以线性时间多对数时间记录快速荧光上升动力学(分辨率2.5 us),分析各种荧光参数的变化等等。 
P700的测量

 

主要技术参数
P700双波长测量光:LED,830 nm和870 nm
PSII荧光测量光:LED,460 nm(DUAL-DB)或620 nm(DUAL-DR)
红色光化光:LED阵列,635 nm;最大连续光强2000 μmol m-2 s-1
蓝色光化光:LED,460 nm;最大连续光强700 μmol m-2 s-1
单周转饱和闪光(ST):200000 μmol m-2 s-1,5~50 μs可调
多周转饱和闪光(MT):20000 μmol m-2 s-1,1~1000 ms可调

Kramer的新荧光参数资料,这是一篇2004年发表在Photosynthesis Research 上的文章,见如下描述:

Kramer提出的新参数:
qL,用于代替qP
Y(II)=Y=(Fm’-F)/Fm’
Y(NPQ) 表征PS II处过量光能耗散为热,与光保护有关
Y(NO) 表征PS II处过量光能引起的光损伤
Y(II)+Y(NPQ)+Y(NO)=1

Schreiber教授和其学生Klughammer博士新设计的Dual-PAM-100中,借鉴测量叶绿素荧光的方法,新增了几个参数:
Y(I) PS I的量子产量或PS I的光合效率
Y(ND) 表征PS I处过量光能耗散为热,与光保护有关
Y(NA) 表征PS I处过量光能引起的光损伤
Y(I)+Y(ND)+Y(NA)=1

色素分子处于氧化态和还原态时,或增加/减少亚基后,其吸收峰会有变化。基于此原理,P700吸收变化、P515吸收变化(类胡萝卜素能态)、P505吸收变化(叶黄素循环)等均可通过Dual-PAM-100测量。主机共用,只是更换激发-检测单元即可。此外,Dual-PAM-100还可用于测量NADPH荧光、9AA荧光(跨膜质子梯度)等。

部分利用DUAL-PAM-100研究藻类的P700文献

1.         Bernát G, Appel J, Ogawa T, Rögner M. Distinct Roles of Multiple NDH-1 Complexes in the Cyanobacterial Electron Transport Network as Revealed by Kinetic Analysis of P700+ Reduction in Various ndh-Deficient Mutants of Synechocystis sp. Strain PCC6803. Journal of Bacteriology,2011, 193(1):292-295. [DUAL-PAM-100]
2.         Cruz S, Goss R, Wilhelm C, Leegood R, Horton P, Jakob T. Impact of chlororespiration on non-photochemical quenching of chlorophyll fluorescence and on the regulation of the diadinoxanthin cycle in the diatom Thalassiosira pseudonana. Journal of Experimental Botany,2011, 62(2):509-519. [DUAL-PAM-100, PAM-100]
3.        Gao S, Shen S, Wang G, Niu J, Lin A, Pan G. PSI-driven Cyclic Electron Flow Allows Intertidal Macro-algae Ulva sp. (Chlorophyta) To Survive In Desiccated Conditions Plant & Cell Physiology,2011, 52(5):885-893. [DUAL-PAM-100, IMAGING-PAM]
4.         Ido K, Gross CM, Guerrero F, Sedoud A, Lai T-L, Ifuku K, Rutherford AW, Krieger-Liszkay A. High and low potential forms of the QA quinone electron acceptor in Photosystem II of Thermosynechococcus elongatus and spinach Journal of Photochemistry and Photobiology B: Biology,2011, 104(1-2):154-157. [DUAL-PAM-100]
5.         Lü F, Wang G, Jin H. Photosynthetic responses of thalli and isolated protoplasts of Bryopsis hypnoides (Bryopsidales, Chlorophyta) during dehydration Chinese Journal of Oceanology and Limnology,2011, 29(2):334-342. [DUAL-PAM-100]
6.         Nagy G, Szabó M, Ünnep R, Káli G, Miloslavina Y, Lambrev PH, Zsiros O, Porcar L, Timmins P, Rosta L et al. Modulation of the multilamellar membrane organization and of the chiral macrodomains in the diatom Phaeodactylum tricornutum revealed by small-angle neutron scattering and circular dichroism spectroscopy Photosynthesis Research,2011:in press. [DUAL-PAM-100]
7.         Philipps G, Happe T, Hemschemeier A. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii Planta,2011:in press. [DUAL-PAM-100]
8.         Ratti S, Knoll AH, Giordano M. Did sulfate availability facilitate the evolutionary expansion of chlorophyll a+c phytoplankton in the oceans? Geobiology,2011, 9(4):301-312. [DUAL-PAM-100]
9.         Simionato D, Sforza E, Carpinelli EC, Bertucco A, Giacometti GM, Morosinotto T. Acclimation of Nannochloropsis gaditana to different illumination regimes: Effects on lipids accumulation Bioresource Technology,2011, 102(10):6026-6032. [DUAL-PAM-100]
10.       Tolleter D, Ghysels B, Alric J, Petroutsos D, Tolstygina I, Krawietz D, Happe T, Auroy P, Adriano J-M, Beyly A et al. Control of Hydrogen Photoproduction by the Proton Gradient Generated by Cyclic Electron Flow in Chlamydomonas reinhardtii. The Plant Cell,2011, 23(7):2619-2630. [DUAL-PAM-100]
11.       Yang R-L, Zhou W, Shen S-D, Wang G-C, He L-W, Pan G-H. Morphological and photosynthetic variations in the process of spermatia formation from vegetative cells in Porphyra yezoensis Ueda (Bangiales, Rhodophyta) and their responses to desiccation. Planta,2011:in press    DOI 10.1007/s00425-00011-01549-y. [IMAGING-PAM, DUAL-PAM-100]
12.       潘光华, 高山, 王广策, 解修俊. 温度和光照对孔石莼光合作用的影响. 海洋科学,2011, 35(9):14-17. [DUAL-PAM-100]
13.       Ma W, Mi H, Shen Y. Influence of the redox state of QA on phycobilisome mobility in the cyanobacterium Synechocystis sp. strain PCC 6803 Journal of Luminescence,2010, 130(7):1169-1173. [DUAL-PAM-100]
14.       Wang Q, Hall CL, Al-Adami MZ, He Q. IsiA Is Required for the Formation of Photosystem I Supercomplexes and for Efficient State Transition in Synechocystis PCC 6803. PLoS ONE,2010, 5(5):e10432. doi:10410.11371/journal.pone.0010432. [DUAL-PAM-100]
15.       Wang Z, Wang G, Niu J, Wang W, Peng G. Optimization of conditions for tetraspore release and assessment of photosynthetic activities for different generation branches of Gracilaria lemaneiformis Bory Chinese Journal of Oceanology and Limnology,2010, 28(4):738-748. [DUAL-PAM-100]
16.       Bernát G, Waschewski N, Rögner M. Towards efficient hydrogen production: the impact of antenna size and external factors on electron transport dynamics in Synechocystis PCC 6803 Photosynthesis Research,2009, 99(3):205-216. [DUAL-PAM-100]
17.       Chiu Y-F, Lin W-C, Wu C-M, Chen Y-H, Hung C-H, Ke S-C, Chu H-A. Identification and characterization of a cytochrome b559 Synechocystis 6803 mutant spontaneously generated from DCMU-inhibited photoheterotrophical growth conditions Biochimica et Biophysica Acta,2009, 1787(10):1179-1188. [DUAL-PAM-100]
18.       Grouneva I, Jakob T, Wilhelm C, Goss R. The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana Biochimica et Biophysica Acta,2009, 1787(7):929-938. [DUAL-PAM-100]
19.       Kromkamp JC, Beardall J, Sukenik A, Kopeck J, Masojidek J, van Bergeijk S, Gabai S, Shaham E, Yamshon A. Short-term variations in photosynthetic parameters of Nannochloropsis cultures grown in two types of outdoor mass cultivation systems. Aquatic Microbial Ecology,2009, 56:309-322. [DUAL-PAM, Flow-Through WATER-PAM]
20.       Lin A-P, Wang G-C, Yang F, Pan G-H. Photosynthetic parameters of sexually different parts of Porphyra katadai var. hemiphylla (Bangiales, Rhodophyta) during dehydration and re-hydration Planta,2009, 229(4):803-810. [DUAL-PAM-100]
21.       Perreault F, Ali NA, Saison C, Popovic R, Juneau P. Dichromate effect on energy dissipation of photosystem II and photosystem I in Chlamydomonas reinhardtii. Journal of Photochemistry and Photobiology B: Biology,2009, 96(1):24-29. [DUAL-PAM-100]
22.       Schultze M, Forberich B, Rexroth S, Dyczmons NG, Roegner M, Appel J. Localization of cytochrome b6f complexes implies an incomplete respiratory chain in cytoplasmic membranes of the cyanobacterium Synechocystis sp. PCC 6803 Biochimica et Biophysica Acta,2009, 1787(12):1479-1485. [DUAL-PAM-100]
23.       Sukenik A, Beardall J, Kromkamp JC, Kopeck J, Masojídek J, van Bergeijk S, Gabai S, Shaham E, Yamshon A. Photosynthetic performance of outdoor Nannochloropsis mass cultures under a widerange of environmental conditions. Aquatic Microbial Ecology,2009, 56(2-3):297-308. [DUAL-PAM-100, FLOW THROUGH WATER-PAM]
24.       Tsunoyama Y, Bernát G, Dyczmons NG, Schneider D, Rögner M. Multiple rieske proteins enable short- and long-term light adaptation of Synechocystis sp. PCC 6803. Journal of Biological Chemistry,2009, 284:27875-27883. [DUAL-PAM-100]
25.       Bailey S, Melis A, Mackey KRM, Cardol P, Finazzi G, Dijken Gv, Berge GM, Arrigo K, Shrager J, Grossman A. Alternative photosynthetic electron flow to oxygen in marine Synechococcus Biochimica et Biophysica Acta,2008, 1777(3):269-276. [DUAL-PAM-100, WATER-PAM]
26.       François P, Nadia AA, Cyril S, Philippe J, Radovan P, Alteration of Energy Dissipation by Dichromate in Xanthophyll Deficient Mutants of Chlamydomonas reinhardtii In: Photosynthesis Energy from the Sun: 14th International Congress on Photosynthesis. Edited by Allen JF, Gantt E, Golbeck JH, Osmond B: Springer; 2008: 1535-1538.
27.       Ma W, Chen L, Wei L, Wang Q. Excitation energy transfer between photosystems in the cyanobacterium Synechocystis 6803 Journal of Luminescence,2008, 128(3):546-548. [DUAL-PAM-100]
28.       Ma W, Wei L, Wang Q. The response of electron transport mediated by active NADPH dehydrogenase complexes to heat stress in the cyanobacterium Synechocystis 6803 Science in China,2008, 51(12):1082-1087. [dual-pam-100]
29.       Xu M, Bernát G, Singh A, Mi H, Rögner M, Pakrasi HB, Ogawa T. Properties of mutants of Synechocystis sp. strain PCC 6803 lacking inorganic carbon sequestration systems. Plant & Cell Physiology,2008, 49(11):1672-1677. [DUAL-PAM-100]
30.       Volkmer T, Schneider D, Bernát G, Kirchhoff H, Wenk S-O, Rögner M. Ssr2998 of Synechocystis sp. PCC 6803 is involved in regulation of cyanobacterial electron transport and associated with the cytochrome b6f complex. Journal of Biological Chemistry,2007, 282(6):3730-3737. [DUAL-PAM-100]

 
兰州文曦分析仪器有限公司 版权所有 地    址:甘肃省兰州市科技街95号 邮    编:730000 陇ICP备09001239号
服务热线:0931-8269011 8262889-801 服务邮箱:hyg180@163.com